Rate of Molecular Transfer of Allyl Alcohol across an AOT Surfactant Layer Using Muon Spin Spectroscopy.
نویسندگان
چکیده
The transfer rate of a probe molecule across the interfacial layer of a water-in-oil (w/o) microemulsion was investigated using a combination of transverse field muon spin rotation (TF-μSR), avoided level crossing muon spin resonance (ALC-μSR), and Monte Carlo simulations. Reverse microemulsions consist of nanometer-sized water droplets dispersed in an apolar solvent separated by a surfactant monolayer. Although the thermodynamic, static model of these systems has been well described, our understanding of their dynamics is currently incomplete. For example, what is the rate of solute transfer between the aqueous and apolar solvents, and how this is influenced by the structure of the interface? With an appropriate choice of system and probe molecule, μSR offers a unique opportunity to directly probe these interfacial transfer dynamics. Here, we have employed a well characterized w/o microemulsion stabilized by bis(2-ethylhexyl) sodium sulfosuccinate (Aerosol OT), with allyl alcohol (CH2═CH-CH2-OH, AA) as the probe. Resonances due to both muoniated radicals, CMuH2-C*H-CH2-OH and C*H2-CHMu-CH2-OH, were observed with the former being the dominant species. All resonances displayed solvent dependence, with those in the microemulsion observed as a single resonance located at intermediate magnetic fields to those present in either of the pure solvents. Observation of a single resonance is strong evidence for interfacial transfer being in the fast exchange limit. Monte Carlo calculations of the ΔM = 0 ALC resonances are consistent with the experimental data, indicating exchange rates greater than 10(9) s(-1), placing the rate of interfacial transfer at the diffusion limit.
منابع مشابه
Probing Nanoscale Thermal Transport in Surfactant Solutions
Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scatterin...
متن کاملKinetics of the Formation of Nano-Sized Platinum Particles in Water-in-Oil Microemulsions.
The effect of surfactant type and temperature on the kinetics of the formation of platinum nanoparticles in water-in-oil microemulsions by chemical reduction of PtCl(6)(2-) were examined with time-resolved UV-vis absorption spectroscopy. The surfactants used were poly(ethylene glycol)monododecyl ethers (C(12)E(4), C(12)E(5), C(12)E(6)), sodium bis(2-ethylhexyl)sulphosuccinate (AOT), and mixture...
متن کاملUltrafast energy transfer in water-AOT reverse micelles.
A spectroscopic investigation of the vibrational dynamics of water in a geometrically confined environment is presented. Reverse micelles of the ternary microemulsion H2O/AOT/n-octane (AOT = bis-2-ethylhexyl sulfosuccinate or aerosol-OT) with diameters ranging from 1 to 10 nm are used as a model system for nanoscopic water droplets surrounded by a soft-matter boundary. Femtosecond nonlinear inf...
متن کاملSolvent effects on AOT reverse micelles in liquid and compressed alkanes investigated by neutron spin-echo spectroscopy.
Neutron Spin-Echo (NSE) spectroscopy has been employed to study the interfacial properties of reverse micelles formed with the common surfactant sodium bis-2-ethylhexyl-sulfosuccinate (AOT) in liquid alkane solvents and compressed propane. NSE spectroscopy provides a means to measure small energy transfers for incident neutrons that correspond to thermal fluctuations on the nanosecond time scal...
متن کاملUsing spin polarised positive muons for studying guest molecule partitioning in soft matter structures.
Fully polarised positive muons substituted for protons in organic free radicals can be used as spin labels which reveal information about the structure, dynamics and environment of these radicals. In applications via the technique of avoided-level-crossing muon spin resonance (ALC-microSR), the positive muon has been used to study the partitioning of phenyl alcohols in lamellar phase colloidal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 32 3 شماره
صفحات -
تاریخ انتشار 2016